一类微分型Gronwall不等式的应用及推广  被引量:3

Application and Generalization of a Class of Differential Gronwall Inequalities

在线阅读下载全文

作  者:聂东明[1] 马艳丽[1] 潘娜娜[1] NIE Dong-ming;MA Yan-li;PAN Na-na(Department of Common Courses,Anhui Xinhua University,Hefei 230088,China)

机构地区:[1]安徽新华学院通识教育部,合肥230088

出  处:《重庆工商大学学报(自然科学版)》2020年第2期1-5,共5页Journal of Chongqing Technology and Business University:Natural Science Edition

基  金:安徽省教育厅自然科学研究项目(KJ2017A622,KJ2019A0875);安徽新华学院教学团队项目(2017JXTDX05);安徽新华学院科研项目(2019ZR005).

摘  要:常见的Gronwall不等式分为积分形式与微分形式。首先,对于常见的积分型Gronwall不等式,旨在给予一种新的证明方法,不同于以往不等式两端乘以指数函数的证明方法,而是应用最基本的积分公式加以证明,并用该不等式证明了一阶常微分方程解的唯一性;其次,旨在推广微分型Gronwall不等式,应用基本微分型不等式证明了波动方程解的唯一性及热传导方程的解能量估计;再者,应用变量代换、求导公式及基本的微分型Gronwall不等式,把一阶微分型的Gronwall不等式推广为两种情形:右端控制项由一次方升到α(α>0)次方;把一阶微分型的Gronwall不等式推广到二阶微分型的Gronwall不等式,并得到与一阶相似的结论。The common Gronwall inequalities are divided into integral and differential forms.Firstly,for the common integral Gronwall inequalities,the purpose is to give a new proof method,which is different from the proof method of exponential function multiplied by the two ends of former inequalities,but is proved by using the basic integral formula,and the uniqueness of the solutions of the ordinary differential equations of the first order type is proved by using this inequality.Secondly,the purpose is to generalize differential Gronwall inequality,and the uniqueness of the solutions of wave equation and the estimation of the solution energy of heat conduction equation are proved by using the basic differential equalities.Furthermore,by using variable substitution,derivation formula and the basic differential Gronwall inequality,the Gronwall inequality of the first order differential type is generalized into two cases:the right-end control term rises from 1 to theαth power(α>0);the Gronwall inequality of the first order differential type is extended to the Gronwall inequality of the second order differential type,and the conclusion similar to that of first order differential type is obtained.

关 键 词:GRONWALL不等式 微分方程 应用 推广 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象