检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楼梦瑶 王旭阳[1,2] 陈瑞 葛彤 LOU Mengyao;WANG Xuyang;CHEN Rui;GE Tong(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学船舶海洋与建筑工程学院,上海200240 [2]上海交通大学海洋工程国家重点实验室,上海200240
出 处:《中国舰船研究》2020年第1期48-55,67,共9页Chinese Journal of Ship Research
基 金:国家重点研发计划资助项目(2017YFC0307002)。
摘 要:[目的]对船舶升沉运动进行预测有助于增强升沉补偿器的补偿效果,减少海浪对作业设备的干扰。为提高升沉预测模型的精度和稳定性,提出一种船舶升沉运动实时预测方法。[方法]基于带外源输入的非线性自回归(NARX)神经网络建立单海况预测模型,利用船舶系统仿真器获取母船升沉运动仿真数据,将NARX模型与卡尔曼(Kalman)模型、普通反向传播(BP)模型的预测结果进行对比。在此基础上,对单海况预测模型进行改进,建立多海况预测模型。[结果]多海况预测模型预测精度较高,且稳定性优于单海况模型,在2~5级海况下的最大预测误差均小于10-4量级。[结论]仿真结果表明,NARX神经网络对复杂海浪环境具有良好的适应性,它的预测速度和精度均优于BP神经网络和传统滤波方法,在高海况下仍可保持高预测精度。[Objectives]Predicting heave motion is helpful for improving the performance of the heave compensator and reducing the disturbance of waves on operating equipment. To improve the accuracy and stability of the heave prediction model, a real-time prediction method for ship heave motion is proposed in this paper.[Methods]Based on the Nonlinear Autoregressive with e Xogeneous inputs(NARX) neural network,a single sea-state prediction model is established. The simulated heave motion of the vessel is obtained using the Marine Systems Simulator software tool to verify the model. The prediction model based on NARX is compared with prediction models based on Kalman and BP. On this basis, a multi sea-state prediction model is established by improving the single sea-state model.[Results]The prediction accuracy requirements of the multi sea-state prediction model are satisfied, and its stability is better than the single sea-state model,with a maximum prediction error of less than 10-4 magnitude in the range of sea state from 2 to 5.[Conclusions]The simulation results verify the good adaptability of the NARX neural network to the complex wave environment. Its prediction speed and accuracy are higher than the common back-propagation neural network and the traditional filtering method. It still maintains high prediction accuracy under high sea state.
分 类 号:U661.32[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222