检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李玉洁 Li Yujie(Institute of Mathematics and Statistics,Anhui Normal University,Wuhu 241003,China)
机构地区:[1]安徽师范大学数学与统计学院,安徽芜湖241003
出 处:《湖南科技大学学报(自然科学版)》2020年第1期113-118,共6页Journal of Hunan University of Science And Technology:Natural Science Edition
摘 要:利用矩阵分块和矩阵商奇异值分解,给出了主子阵约束下的Hermite广义反Hamilton矩阵的广义特征值反问题有解的充要条件和通解具体表达式.并讨论了用主子阵约束下的广义特征值反问题的Hermite广义反Hamilton解来构造给定矩阵的最佳逼近解问题,得出该问题有解的充分必要条件和最佳逼近解的表达式.Using matrix factorization and quotient singular value decomposition of a matrix,the necessary and sufficient conditions,that of the existence of solution,were given to inverse genera-lized eigenvalue problem for hermite generalized inverse hamilton matrices under a submatrix constraint,the expression for the solution was provided.Moreover,based on solution set of inverse generalized eigenvalue problem for hermite generalized inverse hamilton matrices under a submatrix constraint,the optimal approxition problem to a given matrix was considered,the necessary and sufficient conditions for the optimal approxition problem are given,and the expression for the solution was provided.
关 键 词:Hermite广义反Hamilton矩阵 广义特征值反问题 最佳逼近
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.37.17