检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付子爔 徐洋[1] 吴招娣 许丹丹 谢晓尧[1] FU Zixi;XU Yang;WU Zhaodi;XU Dandan;XIE Xiaoyao(Key Laboratory of Information and Computing Science of Guizhou Province,Guizhou Normal University,Guiyang 550001,China)
机构地区:[1]贵州师范大学贵州省信息与计算科学重点实验室,贵阳550001
出 处:《计算机工程》2020年第4期115-122,共8页Computer Engineering
基 金:中央引导地方科技发展专项(黔科中引地〔2018〕4008);贵州师范大学创新创业教育研究基金项目(SCJJ1805);贵州师范大学研究生创新基金(YC[2018]030)。
摘 要:为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设计IL-SVM-KNN分类器,并采用平衡k维树作为数据结构提升执行速度.训练阶段应用增量学习思想并考虑知识库的扩展,分类阶段则利用SVM和KNN算法将待分类数据分成3种情况应用不同的分类策略.基于KDD CUP99和NSL-KDD数据集进行实验,结果表明,IL-SVM-KNN能够区分正常流量和异常流量并准确判断异常流量的攻击类型,其准确率较KNN算法和SVM算法有明显提升,判断攻击类型的准确性高于决策树、随机森林和XGBoost算法,并且较两层卷积神经网络消耗时间更少,资源消耗更低.In order to meet the requirements of intrusion detectionfor real-time performance and accuracy,this paper designs an IL-SVM-KNN classifier that combines Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)algorithm,and the balanced k-dimensional tree is used for data structure to improve the execution speed.In the training phase,the idea of incremental learning is applied and the expansion of the knowledge base is considered.In the classification phase,the SVM algorithm and KNN algorithm are used to divide the to-be-classified data into three cases,each case with a unique classification strategy.Experimental results on KDD CUP99 and NSL-KDD datasets show that the IL-SVM-KNN classifier can distinguish abnormal traffic from normal traffic,and determine the type of abnormal traffic attacks.The accuracy of the proposed classifier is significantly improved compared with the KNN algorithm and SVM algorithm.It also outperforms the decision tree,random forests and XGBoost algorithm in terms of the accuracy of determining the attack type while reducing the elapsed time and resource consumption compared with two-layer convolution neural network.
关 键 词:支持向量机 K最近邻算法 k维树 入侵检测 增量学习 卷积神经网络
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90