基于特征分组聚类的异常入侵检测系统研究  被引量:19

Research on Anomaly Intrusion Detection System Based on Feature Grouping Clustering

在线阅读下载全文

作  者:何发镁[1,2] 马慧珍 王旭仁 冯安然 HE Famei;MA Huizhen;WANG Xuren;FENG Anran(Library,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Network Assessment Technology,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;Information Engineering College,Capital Normal University,Beijing 100048,China)

机构地区:[1]北京理工大学图书馆,北京100081 [2]中国科学院信息工程研究所中国科学院网络测评技术重点实验室,北京100093 [3]首都师范大学信息工程学院,北京100048

出  处:《计算机工程》2020年第4期123-128,134,共7页Computer Engineering

基  金:国家自然科学基金(61872252)。

摘  要:利用网络连接数据可以按照连接的基本特征、内容特征、网络流量特征和主机流量特征进行分组的特点,基于K-means算法,提出一种按照特征分组进行聚类的方法,以高效实现特征约简和数据降维.通过调整聚类参数保留特征分组内的差异信息,使用决策树C4.5算法对降维后的数据进行入侵分类处理.实验结果表明,该方法能够使kddcup99数据集的聚类特征数由41个降为4个,且对网络连接数据的总检测率为99.73%,误检率为0,其中正常网络连接和刺探攻击Probe的检测率均为100%.The network connection data can execute feature grouping according to the basic features of connection,the content features,the network traffic features and the host features.Taking advantage of this characteristic,this paper proposes a K-means based clustering method according to the grouping of features,so as to effectively achieve feature reduction and data dimensionality reduction.The differential information within the feature groups are retained by adjusting clustering parameters,and the decision tree C4.5 algorithm is used for intrusion classification of the data after dimensionality reduction.Experimental results show that the proposed method can reduce the number of clustering features of kddcup99 dataset from 41 to 4.The overall detection rate on network connection data is 99.73%,the false detection rate is 0 and the detection rates of normal network connection and Probe attack are both 100%.

关 键 词:入侵检测 网络数据 K-MEANS算法 决策树 数据降维 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象