检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:束学渊 汪立新[1] Shu Xueyuan;Wang Lixin(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,Zhejiang,China)
机构地区:[1]杭州电子科技大学通信工程学院,浙江杭州310018
出 处:《计算机应用与软件》2020年第4期114-118,126,共6页Computer Applications and Software
摘 要:针对低信噪比条件下主用户信号检测概率低的问题,提出一种基于循环平稳特征主成分分析与极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)的主用户信号频谱感知算法。在信号各循环频率不为零值的情况下,提取能量最大的信号循环谱,通过PCA对循环谱特征进行降维处理,生成训练样本和测试样本。利用训练完成的XGBoost算法对待检测的信号进行分类,实现主用户信号是否存在检测。实验结果表明:与支持向量机算法、随机森林算法和传统循环谱算法相比较,该算法在低信噪比和低虚警率情况下具有更优的检测性能。Aiming at the low accuracy of primary user signal detection under low SNR conditions,this paper proposes a spectrum sensing algorithm for primary user signals based on cyclostationary feature PCA and XGBoost.Under the condition that the cyclic frequency of the signal was not zero,the signal cycle spectrum with the largest energy was extracted,and the cyclic spectrum features were reduced by PCA to generate training samples and test samples.The trained XGBoost algorithm was used to classify the signals to be detected,so as to realize the detection of the presence of the primary user signal.The experimental results show that compared with support vector machine algorithm,random forest algorithm and traditional cyclic spectrum algorithm,the proposed algorithm has better detection performance in low signal-to-noise ratio and low false alarm rate.
关 键 词:认知网络 频谱感知 循环谱 主成分分析 极限梯度提升
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.161.250