基于人工神经网络的水轮机轴承温度输出特性模型研究  被引量:1

Artificial Neural Network Modeling of Turbine Bearing Temperature Output Characteristics

在线阅读下载全文

作  者:杨海燕[1] 韩国松[1] YANG Hai-yan;HAN Guo-song(Hebei University of Engineering,Handan 056038,Hebei,China)

机构地区:[1]河北工程大学,河北邯郸056038

出  处:《水利科技与经济》2020年第4期63-66,共4页Water Conservancy Science and Technology and Economy

摘  要:为掌握广西三岔水电站水轮机轴承温度输出特性,以该水电站的上下游水位差、导叶开度、浆叶角度作为输入样本,推力轴承作为输出样本,在现场监测数据的基础上,利用BP神经网络与Matlab相结合,建立水轮机轴承温度输出特性模型。结果表明,所建立的模型具有很高的计算精度,有利于水电站水轮发电机组的优化运行系统开发。To understand turbine bearing temperature output characteristics of Sancha hydropower station in Guangxi Zhuang Autonomous Region,the model of turbine bearing temperature output characteristics was developed using BP neural network and Matlab with on-site measuring data.Input sample of the model was water head difference between upstream and lower stream,gate-opening and blade angle,out sample was thrust bearing.Results showed that the ANN model had high accuracy,and could be used in optimizing hydroelectric generating set of hydropower station.

关 键 词:人工神经网络 水轮机 轴承温度 

分 类 号:TV74[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象