检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:南敬昌[1] 臧净 高明明[1] Nan Jingchang;Zang Jing;Gao Mingming(School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)
机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105
出 处:《激光与光电子学进展》2020年第1期190-197,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金青年科学基金(61701211);国家自然科学基金(61372058,61971210);辽宁省特聘教授项目(551806006);辽宁省高校重点实验室项目(LJZS007)。
摘 要:针对BP(back propagation)神经网络直接逆向模型精度低、耗时长、易振荡等缺点,提出一种联合改进蚁群算法(IACO)与贝叶斯正则化算法(BR)的BP神经网络逆向建模方法。通过改进蚁群算法,根据搜索阶段设置挥发因子、路径优劣程度更新信息素,并在启发式因子中考虑出发点、终点与各节点的间距等,优化正向模型的权值,提高整体模型精度;之后使用L1/2范数的贝叶斯正则化算法逆向迭代正向模型的输入,达到提高网络稳定性的目的。将本文方法应用于可重构功率放大器中,实验结果表明:相比于直接逆向建模方法和自适应η逆向建模方法,本文方法的建模精度分别提高99.77%、90.70%,平均运行时间分别减少35.76%、2.05%;本文方法可降低功放设计的复杂度,提高其设计速度。Considering the disadvantages of the direct inverse model for the back propagation(BP)neural network,such as low precision,excessive time consumption,and easy to concussion,this paper proposes an inverse modeling method for the BP neural network that combines an improved ant colony algorithm and a Bayesian regularization algorithm.This method improves the ant colony algorithm,which sets the volatilization factor based on the search stage,updates the pheromone based on the degree of pros and cons of the path,and considers the distance between the starting point and the nodes and the distance between the end point and the nodes in the heuristic factor,to optimize the weight of the forward model and improve the accuracy of the overall model.Then the Bayesian regularization algorithm with L1/2 norm is used to reverse the input of the forward model,which improves the stability of the network.It is applied to a reconfigurable power amplifier.Experimental results show that the accuracy of the method,compared with that of the direct inverse modeling method and the adaptiveηinverse modeling method,is improved by 99.77%and 90.70%,respectively,with the average running time for the modeling being shorten by 35.76%and 2.05%,respectively.Thus,the complexity of designing apower amplification module is reduced and its design speed is accelerated.
关 键 词:光计算 神经网络逆向建模 改进蚁群算法 贝叶斯正则化 L1/2正则子 可重构功率放大器
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222