大数据时代下电视产品的营销推荐研究  

Research on Marketing Recommendations of TV Products in the Big Data Era

在线阅读下载全文

作  者:沈若男 樊璐璐 王文佳 刘鹏飞 SHEN Ruo-nan;FAN Lu-lu;WANG Wen-jia;LIU Peng-fei

机构地区:[1]江苏师范大学数学与统计学院,江苏徐州221000

出  处:《生产力研究》2020年第3期129-132,共4页Productivity Research

基  金:江苏省研究生科研创新计划项目(KYCX18-2146)。

摘  要:互联网技术的快速发展为传统广播电视媒介带来了新的机遇和挑战。文章在这一背景下采用了基于内容的协同过滤算法,对电视产品的文本信息分别进行jieba分词、建立了TOPSIS评价模型和余弦相似度模型,求出了爬虫的信息矩阵与每位用户观看节目的综合评价值之间的相似度;然后采用了基于用户的协同过滤算法,以电影产品为例,采用Python软件将55个电影产品的标签与爬虫得到的电影数据的标签进行连接,计算55个销售产品的标签,与用户的标签的相似度,为用户做出推荐,促进电视媒体营销的发展。

关 键 词:协同过滤 jieba分词 SVD降维 余弦相似度 

分 类 号:F713.5[经济管理—市场营销]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象