检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭蹦 杨耀权[1] 江鹏宇 PENG Beng;YANG Yao-quan;JIANG Peng-yu(School of Control and Computer Engineering,North China Electric Power University,Baodin 071003,China)
机构地区:[1]华北电力大学控制与计算机工程学院,河北保定071003
出 处:《激光与红外》2020年第4期396-402,共7页Laser & Infrared
摘 要:针对经典迭代最邻近点(iterative closest point,ICP)算法在三维激光点云配准领域内,存在收敛速度慢、配准误差大、配准效率低的问题,提出了一种基于法向量夹角特征和边界旋转角相融合的改进ICP算法。利用点云区域层划分将点云分成若干独立单元方格,搜寻方格的法向量夹角特征关键点,结合点面曲率对应关系形成初始匹配点对,随后引入距离约束函数,估算边界旋转角和相关动态迭代系数,自动优化刚性变换参数。实验结果表明,与传统ICP算法相比,改进后的算法配准误差降至0.3%以下,配准时间减少50%以上,有效提升点云配准效率。For the classical iterative closest point algorithm in the field of 3D laser point cloud registration,there are problems of slow convergence,large registration error and low registration efficiency.An improved ICP algorithm based on normal vector angle features and boundary rotation angle is proposed.The point cloud is divided into several independent unit squares by using the point cloud region layer division.The key points of the normal angle of the square are searched,and the initial matching point pairs are formed by the corresponding relationship of the point surface curvature.Then the distance constraint function is introduced,estimating the boundary rotation angle and related dynamic iteration coefficients to optimize automatically rigid transformation parameters.The experimental results show that compared with the traditional ICP algorithm,the improved algorithm registration error is reduced to less than 0.3%,the registration time is reduced by more than 50%,and the point cloud registration efficiency is effectively improved.
关 键 词:点云配准 法向量夹角 边界旋转角 ICP算法 动态迭代系数 刚性变换
分 类 号:TN249[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30