检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑茜元 郑虹[1] 侯秀萍[1] ZHENG Qianyuan;ZHENG Hong;HOU Xiuping(School of Computer Science and Engineering,Changchun University of Technology,Changchun 130000,China)
机构地区:[1]长春工业大学计算机科学与工程学院,吉林长春130000
出 处:《软件工程》2020年第5期6-8,5,共4页Software Engineering
基 金:吉林省教育厅项目(JJKH20181046KJ).
摘 要:对在线学习者注意力状态检测的方法大多基于眼睛闭合频率、头部偏转等特征,此类方法能够应对大多数情况,但针对学习者正视屏幕且视线落点处于屏幕上时出现的发呆、分神状态无法作出检测。针对此问题,提出了一种基于RNN的眼动分析算法RNN-EMA(RNN-EyeMovementAnalysis),该算法通过对序列眼动向量分析,预测学生学习行为,完成当前学习状态检测。实验表明,RNN-EMA算法能够对学习状态作出有效检测,且对比同类方法效果有所提升。Online learners’ attention states are mostly detected through eye closure frequency, head rotation and other action features. These methods can cope with most situations, but cannot detect the absent-minded and distracted state when the learner is facing the screen and the sight point is on the screen. To solve this problem, the paper proposes an RNN-EMA(RNN-Eye Movement Analysis) algorithm based on RNN. The algorithm predicts the learning behavior of students through sequential eye movement vector analysis, and conducts the current learning state detection. Experiments show that the RNNEMA algorithm can effectively detect the learning state, and the accuracy is improved compared with other methods of the same kind.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43