基于模型更新与快速重检测的长时目标跟踪  被引量:15

Long-Term Object Tracking Based on Model Updating and Fast Re-Detection

在线阅读下载全文

作  者:沈玉玲 伍忠东[1] 赵汝进[2] 吴旭 颜坤[2] 马跃博[2] Shen Yuling;Wu Zhongdong;Zhao Rujin;Wu Xu;Yan Kun;Ma Yuebo(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China;Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China)

机构地区:[1]兰州交通大学电子与信息工程学院,甘肃兰州730070 [2]中国科学院光电技术研究所,四川成都610209

出  处:《光学学报》2020年第3期115-124,共10页Acta Optica Sinica

基  金:国家自然科学基金(61501429);中国科学院青年创新促进会(2016335);甘肃省高等学校创新团队项目(2017C-09);兰州市科技局科技项目(2018-1-51)。

摘  要:在目标遮挡、光线变化等复杂的跟踪环境下,现有相关滤波跟踪算法无法对目标进行长时间实时稳定跟踪。提出一种基于模型更新与快速重检测的长时跟踪算法。首先,在现有的目标定位与尺度变化的相关滤波跟踪算法基础上搭建长时目标跟踪的框架,提出加入模型监测更新机制,根据最大响应和平均峰响应相关能量值判别进入更新或重检测环节;然后,基于提取描述子特征的重检测方法,将提取特征的比特维数统一降到512进行优化,加快重检测速率。所提算法选取OTB-100中20个有代表性的序列进行测试,成功率评估均值为0.706,精确度评估均值为0.805,平均速度为48.5 frame/s;在自采集的数据集上平均准确率能达到87.65%,能够在尺度变化、遮挡等复杂情况下满足长时跟踪的准确性和实时性要求。In the complex tracking environments, such as those with target occlusion and illumination change, the existing correlation filtering tracking algorithm can not stably track the target for long periods in real time. A long-term tracking algorithm based on model update and fast re-detection is proposed. The proposed algorithm initially builds a long-term target tracking framework based on the existing correlation filtering tracking algorithm with target location and the scale change and subsequently proposes a model monitoring updating mechanism, which enter into updating or re-detection link according to the correlation energy values of maximum response and average peak response. Then, the bit dimension of the extracted features can be reduced to 512 using the re-detection method based on extracting descriptor features to accelerate the re-detection rate. The algorithm presented in this study selects 20 representative sequences from OTB-100 dataset for testing. The average success rate, average accuracy, and average rate are observed to be 0.706, 0.805, and 48.5 frame/s, respectively. Furthermore, the average accuracy of the self-collected datasets reaches 87.65%, satisfying the accuracy and real-time demands of long-term tracking in complex situations, including scale change and occlusion.

关 键 词:机器视觉 目标跟踪 相关滤波 模型更新 在线重检测 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象