优化多核SVM的蛋白质二级结构预测  被引量:2

Protein secondary structure prediction based on optimized multi-kernel SVM

在线阅读下载全文

作  者:刘斌[1] 温雪岩 LIU Bin;WEN Xueyan(College of Electronic Information and Artificial Intelligence,Shaanxi University of Science and Technology,Xi’an 710021,China)

机构地区:[1]陕西科技大学电子信息与人工智能学院,陕西西安710021

出  处:《现代电子技术》2020年第8期139-142,共4页Modern Electronics Technique

基  金:国家自然科学基金资助项目(61871260)。

摘  要:蛋白质序列的不同特征提取方式对蛋白质结构分类有很大的影响。为更好地表达蛋白质结构信息,基于特征融合思想构建特征向量,并使用一种基于多核支持向量机的方法,以多个核函数的线性加权代替传统的单一核函数,在对多类特征进行整合后构造SimpleMKL分类模型;利用梯度下降法迭代求解核函数的权值系数,并校准核函数参数和不同特征表达的融合效果。实验结果表明,该方法提高了蛋白质二级结构分类精度,在分类精度方面有明显优势,有助于准确预测蛋白质的二级结构。The different feature extraction methods of protein sequence have great influence on protein structure classification. For better expression of protein structure information,the feature vectors are constructed based on feature fusion idea,and the traditional single kernel function is replaced by the linear weighting of multiple kernel functions by means of the method based on multi-kernel SVM(support vector machine);the SimpleMKL classification model is constructed after integrating the multi-class features,the weight coefficient of kernel function is solved iteratively by means of the gradient descent method,and the fusion effects of kernel function parameters and different feature expressions are calibrated. The experimental results show that the proposed method improves the classification accuracy of protein secondary structure,and has obvious advantages in classification accuracy,which is helpful to accurately predict the secondary structure of protein.

关 键 词:蛋白质 二级结构预测 多核支持向量机 特征提取 特征融合 线性加权 

分 类 号:TN911-34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象