检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐新华 Tang Xinhua(Department of Mechanical and Electrical Engineering, Chongqing Aerospace Polytechnic, Chongqing 400021, China)
机构地区:[1]重庆航天职业技术学院机电工程系,重庆400021
出 处:《机械科学与技术》2020年第3期367-373,共7页Mechanical Science and Technology for Aerospace Engineering
摘 要:针对分布式电驱动汽车轮胎侧向力和侧偏刚度不易测量的问题,考虑到车辆横向载荷转移,结合无迹卡尔曼滤波和扩展卡尔曼滤波优点,设计了双卡尔曼滤波观测器分别估计轮胎侧向力和侧偏刚度。建立7自由度车辆模型,基于无迹卡尔曼滤波算法设计轮胎力观测器,并以此作为侧偏刚度观测器的输入;基于扩展卡尔曼滤波算法设计了轮胎侧偏刚度观测器;最后,在MATLAB/Simulink环境下仿真分析,结果表明在不同行驶工况下该观测器均能够有效估计出轮胎侧向力和侧偏刚度。For the problem that the lateral tire forces and cornering stiffness of four-wheel-independent-drive electric vehicles(4WID-EVs)are difficult to be measured,a dual Kalman filter observer are designed to estimate lateral tire forces and tire lateral stiffness respectively,considering the lateral mass transfer of vehicle combining with the advantages of unscented Kalman filter(UKF)and extended Kalman filter(EKF).Firstly,a 7-DOF vehicle model is built in this paper,and the UKF observer is designed to estimate the lateral tire forces based on the UKF algorithm.Secondly,the EKF observer is designed to estimate the cornering stiffness based on the estimated lateral tire forces.Finally,the simulation analysis is carried out in MATLAB/Simulink.The results show that the lateral tire forces and cornering stiffness could be estimated by the UKF observer and EKF observer respectively,and the estimated results have high estimation accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63