检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊逸 梁意文[1] 谭成予[1] 周雯 XIONG Yi;LIANG Yiwen;TAN Chengyu;ZHOU Wen(School of Computer Science,Wuhan University,Wuhan 430072,China)
出 处:《计算机工程与应用》2020年第10期226-230,共5页Computer Engineering and Applications
基 金:国家自然科学基金面上项目(No.61877045);深圳市科技计划项目(No.JCYJ20170412151159461)。
摘 要:针对现有前兆异常检测方法因异常数据较少导致检测准确率偏低的问题,提出一种基于反向选择的检测方法。定义地震数据中的self集与nonself集;将随机选取的未成熟检测器与self集进行匹配,生成半径可变的成熟检测器,覆盖nonself空间;将待检测数据与检测器匹配,通过判断是否在nonself空间得到检测结果;与现有地震异常检测方法BP神经网络、支持向量机进行对比,实验结果表明反向选择用于地震前兆观测数据异常检测有更好的效果。In order to solve the problem of low detection accuracy caused by the lack of abnormal data in the existing precursor anomaly detection methods, a detection method based on negative selection is proposed. Firstly, self set and nonself set in seismic data are defined. Secondly, the randomly selected immature detector is matched with self set to generate a maturity detector with variable radius to cover nonself space. Then, the data to be detected are matched with the detector to determine whether the detection result is obtained in nonself space. Finally, compared with the existing seismic anomaly detection methods, BP neural network and support vector machine. The experimental results show that the negative selection is more effective for the anomaly detection of seismic precursor observation data.
关 键 词:反向选择 异常检测 地震前兆观测数据 计算机免疫系统
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.42.249