检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪颖[1] 王欢[1] 张姝[1] WANG Ying;WANG Huan;ZHANG Shu(College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
机构地区:[1]四川大学电气工程学院,四川省成都市610065
出 处:《电力系统自动化》2020年第9期135-143,共9页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(51807126)。
摘 要:准确识别电压暂降源对暂降责任分摊和治理决策至关重要。文中提出一种基于优化极限学习机的电压暂降源识别方法。通过直接提取电压暂降波形的时域特征和经S变换提取能量熵和奇异熵2种时频域特征,构建基于时域和时频域的特征向量,弥补现有方法仅采用时频变换提取特征,可能丢失仅存在于时域内的重要信息而影响识别精度的不足。针对极限学习机输入权值和隐含层偏置随机产生的不足,采用遗传算法对其进行优化,构建优化极限学习机模型,解决利用模式识别存在模型复杂和耗时较长,难以实现快速识别的问题。应用仿真数据和实测数据验证了所提特征向量和优化极限学习机模型的有效性;并与其他方法相比,证明所提模型简单、训练和分类识别速度快,识别精度更高,适用于边缘计算,可实现电压暂降源的快速准确识别。It is important to accurately identify voltage sag sources for sag responsibility allocation and mitigation decision-making.This paper proposes a recognition method of voltage sag sources based on the optimized extreme learning machine(ELM). The time-domain features are directly extracted from the voltage sag waveforms, and the time-frequency domain features(including energy entropy and singular entropy) are extracted by S-transform. Then the feature vectors are built based on the time-domain and time-frequency domain features. The feature vectors make up for the shortcomings that the existing methods only use timefrequency transform to extract features and may lose the important information only existing in time domain, which will affect the recognition accuracy. The genetic algorithm is used to optimize the input weight and hidden layer bias of the ELM. The optimized ELM model is proposed to solve the problem of the pattern recognition, whose model is complex and time-consuming. The validity of the proposed feature vectors and optimized ELM model are verified by the simulated data and the measured data.Compared with other methods, it is proved that the proposed model is simple and fast in training and classification, and has higher recognition accuracy. It is suitable for edge calculation and can identify the voltage sag sources accurately and fast.
关 键 词:电压暂降 S变换 特征提取 遗传算法 极限学习机
分 类 号:TM714.2[电气工程—电力系统及自动化] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.252.132