检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尤豫心 陈继红[1] YOU Yu-xin;CHEN Ji-hong(School of Information Science and Technology,Nantong University,Nantong 226019,China)
机构地区:[1]南通大学信息科学技术学院,江苏南通226019
出 处:《电脑知识与技术》2020年第9期264-269,273,共7页Computer Knowledge and Technology
基 金:国家自然科学基金自助项目(61872263)。
摘 要:针对使用单一预测模型存在数据特征提取不充分,预测精度不高的问题,提出了一种基于ARIMA-BP组合模型的房地产价格预测方法。结合ARIMA模型处理线性问题的优势以及BP神经网络模型在非线性问题上的优势,利用误差方差加权平均训练法训练出最佳权重的组合并建立组合模型对某市区房地产价格和趋势预测进行实证分析。理论分析和实验结果表明,所提两者的组合模型有效解决了不能充分提取数据特征,预测精度不理想的问题,比单一预测模型能获得更准确的预测效果。In order to solve the problem of insufficient data feature extraction and low prediction accuracy in single prediction model, a real estate price prediction method based on ARIMA-BP combined model is proposed. Combined with the advantages of ARIMA model in dealing with linear problems and the advantages of BP neural network model in non-linear problems, the combination of the best weights is trained by using the weighted average training method of error variance and the combination model is established to make an empirical analysis on the prediction of real estate prices and trends in a certain urban area. Theoretical analysis and experimental results show that the proposed combined model can effectively solve the problem of insufficient extraction of data features and unsatisfactory prediction accuracy, and can achieve more accurate prediction effect than the single prediction model.
关 键 词:房地产价格 ARIMA模型 BP神经网络模型 组合模型 趋势预测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.93