广义变系数KdV方程的保角能量守恒方法  

Conformal Energy-Preserving Method for Generalized Variable Coefficient KdV Equation

在线阅读下载全文

作  者:郭峰[1] 庄清渠[1] GUO Feng;ZHUANG Qingqu(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)

机构地区:[1]华侨大学数学科学学院,福建泉州362021

出  处:《华侨大学学报(自然科学版)》2020年第3期407-414,共8页Journal of Huaqiao University(Natural Science)

基  金:福建省高校创新团队发展计划,泉州市高层次人才团队项目(2017ZT012);中央高校基本科研业务费专项资金资助(ZQN-702)。

摘  要:基于保角哈密尔顿系统的辛形式,对带依时系数的广义KdV(TDKdV)方程提出一个保角能量守恒算法.通过算子分裂方法,方程被分裂成一个哈密尔顿系统和一个耗散系统,其中,耗散系统被精确求解.哈密尔顿系统在时间上采用二阶平均向量场(AVF)方法离散,在空间上采用傅里叶拟谱方法离散.在合适的边界条件下,所提方法可精确保持离散保角能量守恒律及离散保角质量守恒律.数值实验验证文中方法在长时间数值模拟过程中的有效性.Based on the symplectic formulation of the conformal Hamiltonian system,a conformal energy-preserving algorithm for the generalized KdV equation with time-dependent coefficients(TDKdV)is proposed.The equation is split into a Hamiltonian system and a dissipative system by the operator splitting method in which the dissipative system can be solved exactly.The Hamiltonian system is discretized by the second order average vector field(AVF)method in time and the Fourier pseudo-spectral method in space,and the proposed method can exactly preserve the discrete conformal energy conservation law and the discrete conformal mass conservation law under the appropriate boundary conditions.Numerical experiments verify the effectiveness of the method during the long-time numerical simulations.

关 键 词:保角能量守恒 傅里叶拟谱方法 广义KDV方程 阻尼KdV方程 快速傅里叶变换 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象