检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈国涛 滕欢[1,2] CHEN Guo-tao;TENG Huan(College of Electric Engineering,Sichuan University,Chengdu 610065,China;Sichuan Provincial Key Laboratory of Smart Grid,Sichuan University,Chengdu 610065,China)
机构地区:[1]四川大学电气工程学院,四川成都610065 [2]四川大学智能电网四川省重点实验室,四川成都610065
出 处:《水电能源科学》2020年第4期193-196,共4页Water Resources and Power
摘 要:针对能源互联网环境下用电用户数据量大、多维度这一特点,提出了一种混合神经网络深度学习的短期电力负荷预测方法。首先,考虑常见的电力系统负荷的影响因素,建立多维数据库,并进行偏相关分析,排除其他变量干扰;其次,将LSTM、GRU两种神经网络作为前端神经网络对多维数据库中数据进行处理;最后,采用随机概率剔除与Adam训练优化函数改进的BP神经网络作为末端神经网络,建立负荷预测模型。通过算例仿真对本文方法与传统BP神经网络、LSTM神经网络、GRU神经网络进行了对比,验证了所提方法的有效性。Aiming at the large amount and multi-dimensionality of electricity users in the energy Internet environment,this paper proposes a hybrid neural network deep learning method for short-term load forecasting.Firstly,considering the factors affecting the load in the common power systems,a multi-dimension database was established,and partial correlation analysis was performed to eliminate the interference of other variables.Secondly,LSTM and GRU were selected as front-end neural networks to handle the data in multi-dimensional database.Finally,the BP neural network improved by random probability and Adam training optimization function was used as the terminal neural network to establish load forecasting model.The proposed method was compared with the traditional BP,LSTM and GRU neural networks by numerical simulation.The results verify the effectiveness of the proposed method.
分 类 号:TM734[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195