检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡明明 王运锋[1] CAI Mingming;WANG Yunfeng(College of Computer Science,Sichuan University,Chengdu 610065,China)
出 处:《现代雷达》2020年第4期50-54,共5页Modern Radar
基 金:四川省科技计划基金资助项目(2018GZ0070,2019DRC0042)。
摘 要:在传统的无源定位中,时差定位因其复杂度低,定位精度高等优点,广泛应用于电子对抗战中。常用的时差定位算法有Taylor算法和Chan算法等,实际应用中考虑到Chan算法的计算速度快,定位精度较精确和Taylor算法收敛速度快等优势,往往结合Taylor-Chan算法进行联合定位。但当测量误差较大时,Chan算法并不能有效地为Taylor算法提供初值,最终导致最后定位结果发散,使得定位结果出错。针对上述问题,以当前统计模型为基础,文中提出基于扩展卡尔曼滤波的时差定位算法。该算法在Taylor算法需要一个良好的初值估计的基础上,引入了卡尔曼滤波算法,通过最优估计的线性滤波为Taylor算法提供一个稳定的初值。In the traditional passive localization,the time difference localization was widely used in electronic warfare to locate the localization of target because of its low complexity and high locatization accuracy.Commonly used time difference localization algorithms included Taylor iterative algorithm and Chan algorithm.In practice,the Taylor-Chan algorithm was often used for joint localization,which combines the Chan algorithm with fast calculation,accurate localization result and Taylor's fast convergence.However,with the measurement error has been enlarged,the Chan algorithm cannot effectively provide the initial value for the Taylor algorithm,and finally the final localization result was diverged,which makes the locatization result error.Aiming at the above problems,based on the current statistical model,a time difference localization algorithm based on extended Kalman filter was proposed.According to the Taylor algorithm needs for a good initial value estimation,the Kalman filter algorithm was introduced to provide a stable initial value for the Taylor algorithm through linear filtering of the minimum estimated mean square error.
关 键 词:时差定位 扩展卡尔曼滤波算法 Taylor算法 CHAN算法 当前统计模型
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229