基于惯导/数据链测距的相对导航方法研究  被引量:8

Relative Navigation Based on Inertial Navigation/Data Link Ranging

在线阅读下载全文

作  者:晏超然 黄雪梅[1] 张康[1] YAN Chao-ran;HUANG Xue-mei;ZHANG Kang(Beijing Institute of Control and Electronics Technology,Beijing 100038,China)

机构地区:[1]北京控制与电子技术研究所,北京100038

出  处:《计算机仿真》2020年第5期55-60,109,共7页Computer Simulation

摘  要:多飞行器编队协同飞行的关键技术之一是精确的导航技术,而惯性导航系统误差会随时间积累,惯导/GPS在复杂干扰环境下可靠性无法保障,因此需要找到一种自主可靠且高精度的相对导航方法。针对上述问题,提出了一种基于惯导/数据链测距的相对导航方法,利用高精度的飞行器间数据链测距信息校正相对惯性导航误差,并对算法的模型误差和量测误差进行理论分析,给出精度提升方案,最后进行了仿真验证。仿真结果表明,采用基于惯导/数据链测距信息的方法进行相对导航后,惯导相对误差显著减小。上述方法可以充分利用惯导的高稳定性和数据链测距的高精度校准功能,为飞行器编队提供稳定可靠的相对位置、速度信息。One of the key technologies of multi-aircraft formation collaborative flight is accurate navigation technology, while the errors of inertial navigation system can accumulate over time, so the reliability of inertial navigation/GPS cannot be guaranteed in the complex interference environment. Therefore, it is necessary to find an independent, reliable and high-precision relative navigation method. In order to solve the above problems, this paper proposes a relative navigation method based on inertial navigation/data link distance measurement. The relative inertial navigation error was corrected by using high-precision inter-aircraft data link distance measurement information. The model error and measurement error of the algorithm were analyzed theoretically. Simulation results show that the relative error of inertial navigation is significantly reduced after relative navigation based on inertial navigation/data chain ranging information. This method can make full use of the high stability of inertial navigation and the high precision calibration function of data chain distance measurement, and provide stable and reliable relative position and speed information for aircraft formation.

关 键 词:相对导航 多飞行器协同 惯性导航 数据链 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象