检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林智艳 LIN Zhiyan(Water Authority of Huanren Manchu Autonomous County,Liaoning Province,Huanren 117200,China)
机构地区:[1]辽宁省桓仁满族自治县水务局,辽宁桓仁117200
出 处:《人民珠江》2020年第6期74-78,共5页Pearl River
摘 要:大坝变形是同一时刻内外多种荷载综合作用的结果,挖掘位移监测数据潜在规律和发展趋势是大坝变形预测诊断的关键技术,但常规GNSS+棱镜、自动化监测系统等进行观测存在较大非线性误差。为实现非线性、非平稳序列大坝变形数据的平稳化拟合处理,基于大坝变形位移关联性函数,构建了大坝变形预测BP神经网络模型。BP预测模型主要根据水压、温度和时效因子的特点,经实测数据的自适应学习训练获得能真实反映坝体变形规律及趋势的竖向位移预测数据,可为大坝变形安全预测与分析提供详实准确的数据支撑和技术保障。Dam deformation is a result of the combined action of multiple loads at the same time.It is a key technology for prediction and diagnosis of deformation by exploring the potential laws and development trends of displacement monitoring data.However,the existing normal analysis methods such as GNSS+prism,and automatic monitoring system have large non-linear error.In order to realize the smooth fitting process of non-linear and non-stationary dam deformation data,the BP neural network model for dam deformation prediction is constructed based on the correlation function of dam deformation and displacement.Mainly based on the characteristics of water pressure,temperature,and time-depended factors,the BP prediction model can obtain vertical displacement prediction data which can truly show the deformation law and trend of dam body through self-adaptive learning and training of measured data.The model proposed would provide detailed and accurate data and technical support for safety prediction and analysis of dam deformation.
分 类 号:TV698.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30