检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王泉德[1] 张松涛 WANG Quande;ZHANG Songtao(School of Electrical Information,Wuhan University,Wuhan 430072,China)
出 处:《华中科技大学学报(自然科学版)》2020年第5期7-12,共6页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金青年基金资助项目(61701351)。
摘 要:为解决从单目图像中很难恢复出准确、有效深度信息的问题,提出一种多尺度特征融合的单目图像深度估计算法.算法采用端对端训练的卷积神经网络(CNN)结构,引入从图像编码器到解码器的跳层连接来实现在不同尺度上特征的提取和表达,设计了一种多尺度的损失函数来提升卷积神经网络的训练效果.通过在NYU Depth V2室内场景深度数据集和KITTI室外场景深度数据集上的训练、验证和测试,实验结果表明:提出的多尺度特征融合方法得到的深度图边缘清晰、层次分明,且在室内场景和室外场景中均能适用,具有较强的泛化性,可以适应多种实际场景的需求.To solve the problem that it is difficult to recover accurate and effective depth information from monocular images,a monocular image depth estimation algorithm based on multi-scale feature fusion was proposed.End-to-end trained convolutional neural network(CNN)structure was applied to the algorithm,and the skip layer connection from image encoder to decoder was introduced to realize feature extraction and expression on different scales.A multi-scale loss function was designed to improve the training effect of the convolutional neural network.Through training,verification and testing on the NYU Depth V2 indoor scene depth dataset and KITTI outdoor scene depth dataset,experimental results show that the proposed multi-scale feature fusion method can obtain clear,sharp-edged edges in the depth map,and is applicable to both indoor and outdoor scenes with strong generalization,which can adapt to the demands of a variety of actual scenes.
关 键 词:计算机视觉 深度学习 卷积神经网络 单目图像深度估计 多尺度特征融合
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222