检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓左祥[1,2,3] 李春贵[1,2] DENG Zuoxiang;LI Chungui(School of Computer Science and Communication Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China;Key Laboratory of Intelligent Computing and Distributed Information Processing,Guangxi University of Science and Technology,Liuzhou 545006,China;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]广西科技大学计算机科学与通信工程学院,柳州545006 [2]广西科技大学智能计算与分布式信息处理重点实验室培育基地,柳州545006 [3]上海交通大学电子信息与电气工程学院,上海200240
出 处:《内蒙古农业大学学报(自然科学版)》2020年第2期63-68,共6页Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基 金:国家自然科学基金(61472254,61472255,61420106010,61650203);广西教育厅项目(KY2016YB249,2017KY0352).
摘 要:多关系数据挖掘,是数据挖掘方向其中一个热门的研究内容,并且是具有挑战的一个问题。在处理多关系时,传统的数据挖掘算法需要进行物理连接,因而存在效率不高的问题。为了解决这个问题,研究多关系数据挖掘的分类,提出一种有效的多关系决策树分类算法,名为EMDT。EMDT的目标是提高分类准确率,并减少运行时间。EMDT利用元组ID传播,构造出一颗决策树,可以直接在多关系中对类标号未知的元组进行分类,不需要进行物理连接。实验表明,EMDT提高分类准确率,并显著减少运行时间。Multi-relational data mining is one of brand-new research directions and a challenging problem in data mining.While dealing with multiple relations,traditional data mining algorithms use physical join,therefore they have the problem of low efficiency.In order to solve this problem,classification in multi-relational data mining was investigated,and an efficient multi-relational decision tree classification algorithm called EMDT was proposed.EMDT intends to increase the accuracy of classification,and decrease running time.By taking advantage of tuple ID propagation,EMDT constructs a decision tree.Without physical join,EMDT can directly classify the tuples of unknown class labels in multiple relations.Performance results demonstrate EMDT increases the accuracy of classification,and significantly decreases running time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15