检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李帅 郭艳艳[1] 卫霞[1] LI Shuai;GUO Yanyan;WEI Xia(College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China)
机构地区:[1]山西大学物理电子工程学院,山西太原030006
出 处:《测试技术学报》2020年第4期331-337,共7页Journal of Test and Measurement Technology
摘 要:本文提出了一种基于下采样的特征融合遥感图像语义分割模型,该模型在编解码结构基础上,将高分辨率原始图像引入“下采样”模块提取低级语义特征,在此基础上,将输出的低级语义特征通过MobileNetV2和空间金字塔池化进一步提取多尺度高级语义细节特征,然后,将这些高级语义特征和直接从下采样模块提取的低级语义特征融合并进行特征图分割.最后,在“CCF卫星影像的AI分类与识别竞赛”的数据集上取得了93%的训练准确率以及91%的预测准确率.This paper proposes a model of feature fusion based semantic segmentation of remote sensing image.Based on the coding and decoding structure,high-resolution original images were firstly introduced into“down-sampling”module in order to get low-level semantic features,from which,detailed features of multiscale high-level semantic are then obtained by MobileNetV2 and atrous spatial pyramid pooling(ASPP).Moreover,the high-level semantic features and the low-level semantic features directly extracted from the down-sampling module were fused and then segmented of characteristic pattern.Finally,by the CCF Contest for AI Classification and Identification of Satellite Image,a training accuracy of 93%and a forecast accuracy of 91%were obtained.
关 键 词:遥感图像 语义分割 卷积神经网络 特征融合 下采样
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117