安全态势感知系统中K-Means算法的并行化研究  被引量:2

Research on parallelization of K-Means algorithm in security situation awareness system

在线阅读下载全文

作  者:江佳希 谢颖华[1] Jiang Jiaxi;Xie Yinghua(School of Information Science and Technology,Donghua University,Shanghai 201620,China)

机构地区:[1]东华大学信息科学与技术学院,上海201620

出  处:《信息技术与网络安全》2020年第7期36-40,51,共6页Information Technology and Network Security

摘  要:大数据环境下的网络安全事件层出不穷,安全态势感知系统的应用势在必行。通过挖掘日志数据并进行安全分析,可以实现对异常事件的追责与溯源,有效地减少网络安全事故的发生。针对传统K-Means算法时间开销大、执行效率低的问题,将改进K-Means算法在大数据计算框架Hadoop上实现并行化,来满足大数据下安全态势感知系统日志安全分析的需求。实验表明,改进后的算法在有效性和时间复杂度方面都优于传统算法。With the emergence of network security events in a big data environment,the application of security situation awareness systems is imperative.By digging log data and performing security analysis,we can achieve accountability and traceability to abnormal events,and effectively reduce the occurrence of network security incidents.Aiming at the problems of large time overhead and low execution efficiency of the traditional K-Means algorithm,the security situation awareness system in this paper improves the K-Means algorithm to achieve parallelization on the big data computing framework Hadoop,and to meet the needs of log security analysis under big data.Experimental results show that the improved algorithm is superior to traditional algorithms in terms of effectiveness and time complexity.

关 键 词:HADOOP 安全态势 K-MEANS 数据挖掘 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象