检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴晓阳 张森[1,2] 陈先中[1,2] 尹怡欣[1,2] WU Xiao-yang;ZHANG Sen;CHEN Xian-zhong;YIN Yi-xin(School of Automation and Electrical,University of Science and Technology Beijing,Beijing 100083,China;Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education,University of Science and Technology Beijing,Beijing 100083,China)
机构地区:[1]北京科技大学自动化学院,北京100083 [2]北京科技大学工业过程知识自动化教育部重点实验室,北京100083
出 处:《控制理论与应用》2020年第6期1241-1252,共12页Control Theory & Applications
基 金:国家自然科学基金项目(61673056,61673055,61671054);北京市自然科学基金项目(4182039)资助.
摘 要:在高炉生产中,准确的预测高炉煤气流分布状况将有助于保证高炉的稳定顺行.针对传统高炉煤气流预测模型的缺陷,本文提出了一种将带遗传因子的自回归移动平均模型(FF-ARMAX)和基于限定记忆的正则化极限学习机(RFMLS-RELM)相结合的高炉煤气流多步预测模型.在数据预处理方面,建立FF-ARMAX模型消除原始数据中的测量误差,同时采用傅里叶变换法消除数据中叠加的环境噪声.最后采用RFMLS-RELM算法进行多步预测,对比试验表明,该算法在应用于煤气流预测时,预测精度更高,适用于对煤气流分布状况的多步预测.多步预测实验结果表明,该模型虽然仍旧无法完全解决预测误差随预测步数的增加而不断叠加的问题,但相较于其他传统预测模型能够实现更好的预测效果和更高的预测精度,为高炉操作人员分析炉况提供了有效的帮助和支持.In blast furnace production, the prediction of gas flow will help to ensure the stability of the blast furnace.Aiming at the shortcomings of the traditional prediction model of blast furnace gas flow, this paper proposes a multistep prediction model of gas flow based on auto-regressive moving average model based on recursive least squares with forgetting factor(FF-ARMAX) and regularized extreme learning machine based on recursive finite memory least squares(RFMLS-RELM). In terms of data correction, construct FF-ARMAX model to eliminate the measurement error in the data. At the same time, the Fourier transform method is used to denoising. The RFMLS-RELM algorithm is used for multi-step prediction. The comparison experiments show that the proposed algorithm is faster in modeling and higher in prediction accuracy when applied to blast furnace gas flow prediction. It is suitable for the multi-step prediction of gas flow distribution of blast furnace. The experimental results show that the model can accurately predict the distribution of blast furnace gas flow, which provides effective help and support for blast furnace operators to analyze furnace conditions.
关 键 词:高炉 煤气流分布 自回归移动平均模型 限定记忆 极限学习机 预测
分 类 号:TF536[冶金工程—钢铁冶金] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.137.145