检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许景生 XU Jingsheng(College of Basic Education,Lingnan Normal University,Zhanjiang 524037,China)
机构地区:[1]岭南师范学院基础教育学院,广东湛江524037
出 处:《海南师范大学学报(自然科学版)》2020年第2期198-205,共8页Journal of Hainan Normal University(Natural Science)
摘 要:分别应用分离变量法和傅里叶变换法求解各向异性电介质二维无限域拉普拉斯方程的定解问题。所得的解有两种不同的数学形式,分离变量法求得的解是用傅里叶积分表示的,傅里叶变换法求得的解是用傅里叶卷积表示的。由静电场的唯一性定理可知,虽然这两种解有不同的数学表达式,但具备等价性。文章还列举典型算例间接验证了这两种解的等价性,并给出了相应的各向异性电介质物理模型。The separation variable method and the Fourier transform method were used in the explicit solution to two-dimensional infinite domain Laplace equation in anisotropic dielectrics respectively.The solution obtained by the separation variable method was expressed by the Fourier integral,and the solution obtained by the Fourier transform method was expressed by the Fourier convolution.According to the uniqueness theorem of the electrostatic field,although these two kinds of solutions have different mathematical expressions,they should be equivalent.The equivalence of the two solutions was indirectly verified by typical examples,and the corresponding anisotropic dielectric physical models were given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.194.164