检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周婷 刘苗苗 毛飞 罗越 娄淑聍 张文莉 孙一叶 ZHOU Ting;Liu Miao-Miao;MAO Fei;LUO Yue;LOU Shu-Ning;ZHANG Wen-Li;SUN Yi-Ye(College of Electrical&Electronic Engineering,Wenzhou University,Wenzhou 325035,China;Department of Planning&Finance,Wenzhou University,Wenzhou 325035,China)
机构地区:[1]温州大学电气与电子工程学院,温州325035 [2]温州大学计划财务处,温州325035
出 处:《食品安全质量检测学报》2020年第11期3460-3464,共5页Journal of Food Safety and Quality
基 金:大学生创新创业计划项目(JWSC2019112);温州大学开放实验室项目(JW19SK35)。
摘 要:目的利用可见/近红外光谱技术结合变量筛选算法建立预测模型。方法采集7个不同批次蜜桔样本的漫透射光谱,预处理优化后,以无信息变量消除法(uninformative variable elimination,UVE)、竞争性自适应重加权法(competitive adaptive reweighting sampling,CARS)及其组合(UVE-CARS)共3种策略来进行光谱有效波段的筛选,建立蜜桔可溶性固形物含量(soluble solid content,SSC)的偏最小二乘预测模型(partial least square,PLS)。结果比较全变量模型和3个特征变量模型的预测性能,UVE-CARS-PLS模型取得了最优的检测效果,相比全变量模型,建模变量数减少了96.5%,其预测集相关系数RP提升至0.732,预测集均方根误差(root-mean-square error,RMSEP)下降至0.8730 Brix。结论结合多重变量选择算法,可以进一步压缩建模变量数,简化模型,提高模型预测精度,实现区域蜜桔品质的光谱快速检测。Objective To establish a prediction model by using visible-near infrared spectroscopy technology and variable selection algorithms.Methods The diffused transmission spectra of seven different batches of satsumas were collected,and then the spectra were optimized using preprocess methods.Effective spectrum bands were screened by 3 strategies,including uninformative variable elimination(UVE),competitive adaptive reweighting sampling(CARS)and its combination(UVE-CARS),and partial least squares(PLS)prediction model for the soluble solids content(SSC)of satsuma was established Results Comparing the prediction performance of the full variable model and the 3 characteristic variable models,the UVE-CARS-PLS model achieved the best detection effect.Compared with the full variable model,the number of modeling variables was reduced by 96.5%,and the correlation coefficient of prediction set(RP)reached 0.732 and root mean square error(RMSEP)decreased to 0.8730 Brix.Conclusion Combined with the multiple variable selection algorithm,the number of modeling variables can be further compressed,the model can be simplified,the prediction accuracy of the model can be improved,and the spectral detection of regional tangerine quality can be achieved quickly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.170.100