检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁立文
出 处:《中国市场》2020年第19期161-162,167,共3页China Market
基 金:沪江哲社基金专项一般项目资助(项目编号:19HJ-DSSG-00-015)。
摘 要:随着教育投入增加及高校资金来源多元化和高校办学规模进一步发展,高校财务管理由传统核算型向管理型转变。高校财务数据是高校最基本、最有决策价值的数据。大数据时代如何利用数据挖掘方法从庞大的财务数据中分析高校财务信息,建立可操作性强的分析模型,为高校利益相关者提供全方位、高相关性和高准确性的决策信息,为高校科学发展提供高质量的会计信息,是当代高校财务管理工作的一个非常重要的问题。文章选取偿债能力、经营能力、发展能力三项一级指标和资产负债率等15项二级指标构建高校财务预警分析指标体系,采集16所高校(SH1-SH16)2018年的财务数据进行建模,并应用反向传播神经网络(BP神经网络)数据挖掘方法对其中2所高校(SH15、SH16)2018年财务状况进行预警分析,结果显示网络输出和高校实际风险等级一致,表明BP神经网络在高校财务风险预警分析中预警结果精度高(98%),可信度较强,是一种可用于高校财务预警分析的有效量化方法。
关 键 词:BP神经网络 数据挖掘方法 财务预警分析 高校财务管理
分 类 号:G647.5[文化科学—高等教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.172.197