检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨洁 夏卉 Yang Jie;Xia Hui(School of Communication and Information Engineering,Xi'an University of Posts and Telecommunication,Xi'an 710121,China)
机构地区:[1]西安邮电大学通信与信息工程学院,西安710121
出 处:《计算机测量与控制》2020年第7期220-224,共5页Computer Measurement &Control
摘 要:针对传统人工提取专家特征来进行通信信号识别的方法存在局限性大、低信噪比下准确率低的问题,提出一种复基带信号与卷积神经网络自动调制识别相结合的新方法;该方法将接收到的信号进行预处理,得到包含同相分量和正交分量的复基带信号,该信号作为输入卷积神经网络模型的数据集,通过多次训练调整模型结构以及卷积核、步长、特征图和激活函数等超参数,利用训练好的模型对通信信号进行特征提取和识别;实现了对2FSK、4FSK、BPSK、8PSK、QPSK、QAM16和QAM64七种数字通信信号类型的识别分类;实验结果表明,当信噪比为0dB时,七种信号的平均识别准确率已达94.61%,验证了算法是有效的,且在低信噪比条件下有较高的准确率。In the task of communication signal recognition,to improve the limitation and low accuracy under the condition of low signal-to-noise ratio(SNR)which used the traditional manual extraction of expert feature,a new method of automatic modulation recognition based on complex baseband signals and convolutional neural network is proposed.In this method,the received signals are preprocessed to obtain the complex baseband signal containing In-Phase components and Quadrature components.The complex baseband signalis input to convolutional neural network model as data set,which trains the convolutional neural network model for many times and adjusts the model structure,filtersize,stride,featuremap,activation function and other super parameters.The trained convolutional neural network model is used to extract the features and classify signals.The classification and recognition of seven kinds of digital communication signals including 2 FSK,4 FSK,BPSK,8 PSK,QPSK,QAM16 and QAM64 are realized.The experimental results show that when the SNR is 0 db,the average recognition accuracy of seven types of signals can reach 94.61%,which proves that the algorithm is effective and has high accuracy under the condition of low SNR.
关 键 词:调制信号识别 数字通信信号 卷积神经网络 深度学习
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33