检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于恒 梅红岩[1] 许晓明 贾慧萍 YU Heng;MEI Hongyan;XU Xiaoming;JIA Huiping(School of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou,Liaoning 121001,China)
机构地区:[1]辽宁工业大学电子与信息工程学院,辽宁锦州121001
出 处:《计算机工程与应用》2020年第15期15-23,共9页Computer Engineering and Applications
基 金:辽宁省自然科学基金(No.20180550886,No.201602372)。
摘 要:随着深度学习的不断发展与图像数据的爆炸式增长,如何使用深度学习来获得更高压缩比和更高质量的图像逐渐成为热点研究问题之一。通过对近几年相关文献的分析与整理,将基于深度学习的图像压缩方法按照卷积神经网络、循环神经网络、生成对抗网络进行总结与分析,对不同种方法分别列举了具有代表性的实例,并对基于深度学习的图像压缩算法的常用训练数据集、评价指标进行了介绍,根据深度学习在图像压缩领域中的优势对其未来的发展趋势进行了总结与讨论。With the continuous development of deep learning and the explosive growth of image data,how to use deep learning to obtain higher compression ratio and higher quality images has gradually become one of the hot research issues.Through the analysis of the related literatures in recent years,the image compression method based on the deep learning is summarized and analyzed according to the Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Generative Adversarial Network(GAN).This paper enumerates the typical examples,and the image compression algorithm based on depth study of the training data set,commonly used evaluation indexes are introduced,according to the deep learning advantages in the field of image compression for its future development trend are summarized and discussed.
关 键 词:深度学习 图像压缩 卷积神经网络 循环神经网络 生成对抗网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28