检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐义鎏 贺鹏[1,2] 任东 王慧[1] 董婷 邵攀 XU Yiliu;HE Peng;REN Dong;WANG Hui;DONG Ting;SHAO Pan(College of Computer and Information,China Three Gorges University,Yichang Hubei 443000,China;Key Laboratory of Remote Sensing Monitoring and Analysis of Agricultural Environment Safety in Hubei Province,Yichang Hubei 443000,China)
机构地区:[1]三峡大学计算机与信息学院,湖北宜昌443000 [2]湖北省农业环境安全遥感监测分析重点实验室,湖北宜昌443000
出 处:《计算机应用》2020年第S01期209-214,共6页journal of Computer Applications
基 金:国家重点研发计划项目(2016YFD0800902);湖北省技术创新专项(重大项目)(2017ABA157);国家自然科学基金资助项目(41901341)。
摘 要:针对目前森林资源受到盗砍盗伐威胁,相关木材运输车辆行为隐蔽,进而导致无法准确地在交通视频中被识别的问题,提出了一种基于改进fater区域卷积神经网络(faster RCNN)的木材运输车辆检测方法。首先,采用faster RCNN作为基础检测框架,使用金字塔特征网络(FPN)、多尺度训练、锚点框聚类作为基础改进措施;其次,以广义交并比(GIoU)损失函数替换原算法中的smoothL1损失函数作为边界框定位回归的损失函数;最后,计算出在多种实验条件下的模型平均精度均值(mAP),对各种算法进行了对比。实验结果表明,使用GIoU作为损失函数的faster RCNN相比原算法对木材运输车辆检测的平均精度(AP)上升了7.5%,模型平均精度均值(mAP)上升了4.3%;同时,在大型数据集PASCALVOC上,使用GIoU作为损失函数的faster RCNN的mAP达到73.4%,相比其他算法具有明显优势。Because the problem that the current forest resources are threatened by theft and the related timber transport vehicles’ s activities are hidden,these vehicles can not be accurately identified in the traffic video. A timber transport vehicle detection method based on improved faster Regional Convolutional Neural Network(RCNN)was proposed. Firstly,faster RCNN was used as the basic detection framework,and Pyramid Feature Network(PFN),multi-scale training,anchor frame clustering were adopted as the basic improvement measures. Secondly,the smoothL1 loss in the original algorithm was replaced with Generalized Intersection over Union(GIoU)loss function as the loss function of the boundary box regression.Finally,the mean Average Precisions(mAPs)of the model under various experimental conditions were calculated,and the various algorithms are compared. The experimental results show that the Average Precision(AP)of the faster RCNN with GIoU as the loss function is 7. 5% higher than that of the original algorithm,and the model mAP is increased by 4. 3%. At the same time,a comparative experiment was designed on PASCALVOC dataset. The faster RCNN with GIoU loss function has a mAP value of 73. 4%,which has significant advantages over the comparison algorithms.
关 键 词:广义交并比 目标检测 损失函数 金字塔特征网络 faster区域卷积神经网络 车型检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.181.40