基于红外可见光图像配准的电力设备分割算法  被引量:4

Power Equipment Segmentation Algorithm Based on Infrared and Visible Images Registration

在线阅读下载全文

作  者:刘晓康 万曦 涂文超 周清楷 田正稳 LIU Xiao-kang;WAN Xi;TU Wen-chao;ZHOU Qing-kai;TIAN Zheng-wen(Operation and Maintenance Department of Changzhou Power Supply Branch of State Grid Jiangsu Electric Power Co. Ltd.Changzhou 213000, China;IoT Engineering College of Hohai University, Changzhou 213022, China;Jiangsu Yawei Transformer Co. Ltd. , Nantong 226600, China)

机构地区:[1]国网江苏省电力有限公司常州供电分公司运维检修部,江苏常州213000 [2]河海大学物联网工程学院,江苏常州213022 [3]江苏亚威变压器有限公司,江苏南通226600

出  处:《计算机与现代化》2020年第8期26-30,55,共6页Computer and Modernization

基  金:江苏省重点研发计划项目(产业前瞻与共性关键技术——竞争项目)(BE2018092)。

摘  要:电力设备故障会导致变电站大范围停电,造成巨大损失。根据电力设备运行时会发热的特点,提出一种基于红外可见光图像配准的电力设备分割方法,便于进行故障检测。该方法首先利用结构化随机森林对电力设备的红外和可见光图像进行边缘检测,构建可见光边缘图像的多尺度高斯金字塔,然后结合归一化互信息对红外和可见光图像进行配准,对红外图像进行Otsu阈值分割,结合配准结果分割出可见光图像中的电力设备。实验结果表明,该算法能精确地实现配准及分割,具有一定实用性。The fault of power equipment may cause large-scale power outages in substations,bringing out huge losses.According to the characteristics of heat generation during operation of power equipment,a power equipment segmentation method based on infrared and visible images registration is proposed to facilitate fault detection.Firstly,the structured random forest is used to detect the edge of infrared and visible images of the power equipment,and a multi-scale Gaussian pyramid of the visible edge image is constructed.Then the infrared and visible images are registered with the normalized mutual information.Finally,the Otsu threshold segmentation result of the infrared image is combined with the registration result to segment the power equipment in the visible image.The experimental results show that the proposed algorithm can register and segment accurately,and it has certain practicability.

关 键 词:图像分割 电力设备 图像配准 归一化互信息 边缘 结构化随机森林 高斯金字塔 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象