检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟志松 彭清桦 吴广潮[1] ZHONG Zhi-song;PENG Qing-hua;WU Guang-chao(School of Mathematics, South China University of Technology, Guangzhou 510640, China)
出 处:《计算机与现代化》2020年第8期69-75,共7页Computer and Modernization
摘 要:针对传统Slope One推荐算法在稀疏数据集上预测准确率较低的问题,提出一种基于图嵌入的加权Slope One算法。本文算法首先以融合时间信息的用户相似度为边权建立用户关联图,对该图进行图嵌入得到用户特征向量,然后基于Canopy聚类对用户进行类内加权Slope One推荐。另外,为优化算法性能,本文算法基于Spark计算框架实现。实验结果表明,对比传统的加权Slope One,本文算法在稀疏数据集和显式、隐式评分数据集上的推荐效果和评分预测准确率都更优。Aiming at the problem of low prediction accuracy of the traditional Slope One recommendation algorithm on sparse data set,this paper proposes a weighted Slope One algorithm based on graph embedding.This algorithm first establishes a correlation graph with time-aware user similarity as the edges’weight,and obtains user eigen vectors based on the graph embedding of this graph.It then produces intra-class weighted Slope One recommendations using Canopy clustering.Additionally,to optimize the performance of the algorithm,we make an implementation based on the Spark computing framework.Experimental results demonstrate that,compared with the traditional weighted Slope One algorithm,the proposed algorithm has better recommendation effect and score prediction accuracy on both sparse data sets,explicit and implicit scoring data sets.
关 键 词:图嵌入 时间信息 Canopy聚类 加权Slope One算法 SPARK
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.168