检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彬[1] 刘文杰[1] ZHANG Bin;LIU Wenjie(Shanghai Research Institute of Petrochemical Technology,SINOPEC,Shanghai 201208,China)
机构地区:[1]中国石油化工股份有限公司上海石油化工研究院,上海201208
出 处:《化学反应工程与工艺》2019年第5期461-468,共8页Chemical Reaction Engineering and Technology
摘 要:针对苯乙烯生产过程的特点,引入软测量技术在线预测苯乙烯生产过程的一些关键参数,介绍了人工智能BP神经网络和部分最小二乘方法的软测量建模方法,基于企业生产数据研究了乙苯脱氢转化率、第一脱氢反应器脱氢转化率、第二脱氢反应器脱氢转化率和苯乙烯选择性等关键变量的软测量方法,对比了BP神经网络和部分最小二乘方法建模优缺点,应用结果表明,基于BP神经网络所建立的关键参数的软测量模型可真实再现实际苯乙烯生产过程,为安全可靠监控苯乙烯生产过程及未来实施先进及优化控制技术奠定了基础。Aiming at the features of styrene,soft sensor based on the real-time data was applied to predict some key process variables.Two methods,BP neural network and partial least squares,were used to model the unmeasured process variables.At the same time,real-time process data were used to train the model in order to make sure the constructed model endure a good fault-tolerance.The experiments for total conversion,first reactor conversion,second rector conversion of ethylbenzene and selectivity of styrene were given based on BP neural networks and PLS,which showed the proposed methods could predict the dynamic performance of some key variables.It is very useful to monitor the important variables for the advanced control and optimization of styrene production.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158