检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾环身 吴廷增[1] JIA Huan-shen;WU Ting-zeng(School of Mathematics and Statistics,Qinghai Nationality University,Xining 810007,China)
机构地区:[1]青海民族大学数学与统计学院,西宁810007
出 处:《哈尔滨商业大学学报(自然科学版)》2020年第4期475-478,共4页Journal of Harbin University of Commerce:Natural Sciences Edition
基 金:国家自然基金项目(No.11761056).
摘 要:若图G的一个生成子图T是一棵树,则称T为G的一棵生成树;若T为森林,则称它为G的一个生成森林.生成树是表征网络结构性质的一个重要物理量,网络中生成树越多,则网络越健壮.提出了一个k-正则图构成的小世界网络模型,介绍了其概念及演化过程,计算了k-正则图的相关拓扑特性,例如直径、聚类系数等,给出了此类k-正则图的生成树数目计算方法,得出生成树数目公式及熵.A spanning subgraph of a graphGis a treeT,it is called a spanning tree. IfTis a forest,it is called a spanning tree of the graphG. Spanning tree is an important quantity characterizing the structural properties of a network. The more spanning trees in a network,the more robust the network is. In this paper,a small world network model composed of k-regular graph was proposed. The concept and evolution process were introduced. This paper introduced the concept and evolving process and determine the relevant topological characteristics of thek-regular graph,such as diameter and clustering coefficient. Gave a calculation method of number of spanning trees in such four regular network and derived the formulas and the entropy of number of spanning trees.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.70.25