检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑延斌[1,2] 韩梦云 樊文鑫 ZHENG Yanbin;HAN Mengyun;FAN Wenxin(College of Computer and Information Engineering,Henan Normal University,Xinxiang Henan 453007,China;Henan Engineering Laboratory of Intellectual Business and Internet of Things Technologies(Henan Normal University),Xinxiang Henan 453007,China)
机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]智慧商务与物联网技术河南省工程实验室(河南师范大学),河南新乡453007
出 处:《计算机应用》2020年第8期2465-2471,共7页journal of Computer Applications
基 金:国家自然科学基金资助项目(U1604156);河南师范大学青年基金资助项目(2017QK20)。
摘 要:随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。首先,利用2DPCA提取手写体汉字的投影特征向量;然后,将得到的投影特征向量组成特征矩阵;其次,用组成的特征矩阵作为CNN的输入;最后,用Softmax函数进行分类。与基于AlexNet的CNN模型相比,所提方法的运行时间降低了78%,与基于ACNN与DCNN的模型相比,所提方法的运行时间分别降低了80%与73%。实验结果表明,该方法在不降低识别精度的同时,可以减少识别手写体汉字的运行时间。With the rapid growth of computing power,the accumulation of training data and the improvement of nonlinear activation function,Convolutional Neural Network(CNN)has a good recognition performance in handwritten Chinese character recognition.To solve the problem of slow speed of CNN for handwritten Chinese character recognition,Two Dimensional Principal Component Analysis(2DPCA)and CNN were combined to identify handwritten Chinese characters.Firstly,2DPCA was used to extract the projection eigenvectors of handwritten Chinese characters.Secondly,the obtained projection eigenvectors were formed into an eigenmatrix.Thirdly,the formed eigenmatrix was used as the input of CNN.Finally,the softmax function was used for classification.Compared with the model based on AlexNet,the proposed method has the running time reduced by 78%;and compared with the model based on ACNN and DCNN,the proposed method has the running time reduced by 80%and 73%,respectively.Experimental results show that the proposed method can reduce the running time of handwritten Chinese character recognition without reducing the recognition accuracy.
关 键 词:手写体汉字识别 深度学习 卷积神经网络 二维主成分分析 图像分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.195.167