检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冬银 开小山 陶有田 WANG Dongyin;KAI Xiaoshan;TAO Youtian(School of Mathematics and Statistics, Chaohu University, Chaohu 238000, China;School of Mathematics, Hefei University of Technology, Hefei 230601, China;School of Business Administration, Chaohu University, Chaohu 238000, China)
机构地区:[1]巢湖学院数学与统计学院,安徽巢湖238000 [2]合肥工业大学数学学院,安徽合肥230601 [3]巢湖学院工商管理学院,安徽巢湖238000
出 处:《合肥工业大学学报(自然科学版)》2020年第8期1143-1148,共6页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金面上资助项目(61972126);安徽省高校优秀青年人才支持计划资助项目(gxyqZD2016285,gxyq2018076,gxyq2019082);安徽省高等学校自然科学研究资助项目(KJ2018A0455,KJ2019A0683)。
摘 要:针对一种二元矩阵值Padé型逼近(bivariate matrix-valued Padétype approximation,BMPTA),文章给出了一种更加简洁的递推算法。根据二元齐次数量值正交多项式,定义了二元张量积形式正交多项式(bivariate tensor product formal orthogonal polynomial,BTPFOP)及二元矩阵值张量积形式正交多项式(bivariate matrix tensor product formal orthogonal polynomials,BMTPFOP),并给出BMTPFOP的三项递推公式及九项递推公式;基于上述2个公式,得到了计算BMPTA的递推算法;最后的数值例子说明了算法的有效性。The goal of this paper is to find a more simple recursive algorithm for a bivariate matrix-valued Padétype approximation(BMPTA).According to the bivariate homogeneous scalar orthogonal polynomial,a bivariate tensor product formal orthogonal polynomial(BTPFOP)is defined.Then it is generalized to matrix valued case to deduce a bivariate matrix tensor product formal orthogonal polynomials(BMTPFOP).In order to calculate their coefficients,three-term and nine-term recursive formulas of BMTPFOP are developed.By means of the two formulas,an algorithm for calculating BMPTA is presented.Finally,a numerical example is given to illustrate the validity of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.14.133