检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊星 颜晓花 冯宝香 李力 李昊[2] FAN Xing;YAN Xiao-hua;FENG Bao-xiang;LI Li;LI Hao(National Defense Technology Industrial Development Center, Xi'an 710061, China;School of Safety Engineering, North China Institute of Science and Technology, Beijing 065201, China)
机构地区:[1]国防科技工业技术开发中心,西安710061 [2]华北科技学院安全工程学院,北京065201
出 处:《科学技术与工程》2020年第22期9017-9022,共6页Science Technology and Engineering
基 金:国家自然科学基金(45678921)。
摘 要:针对常规控制器在工业电机无参数或者参数失配时引起的控制性能下降等问题,不满足工业自动化发展需求,因此提出一种考虑现实工业情况的无参数模型预测控制。首先引入模型预测控制的思想,将离散异步电机数学模型作为模型预测控制的预测模型并在线估计更新其集总参数,从而无需任何电机参数即可实现模型预测控制。针对工业用电机复杂工况,进行优化使其能够快速且准确地辨识出集总参数。仿真结果表明,所提出的控制策略预测精度高,在工况与电机参数均为未知时变的情况下,无参数模型预测控制仍然能在不同情况下达到较为优良的控制性能,证明了该方法优良的鲁棒性和有效性。Aiming at the problems of the conventional controller in the absence of parameters or parameter mismatch of industrial motors,the development performance of industrial automation is not satisfied.A model predictive control based on system identification(SI-MPC)for the asynchronous motor of electric vehicle was proposed.Firstly,the idea of model predictive control was introduced.The discrete mathematical model of asynchronous motor was derived,which was regarded as a predictive model for MPC,and online estimation updated its lumped parameters.Thus,the motor predictive control could be realized without any parameters.Due to the complex working conditions of industrial motors,an optimization could identify lumped parameters quickly and accurately.Simulation and experimental results show that the proposed control strategy has high prediction accuracy.Under the condition that both working conditions and motor parameters are unknown and time-varying,SI-MPC can still achieve excellent control performance under different conditions,which proves the excellent parameter robustness and effectiveness of this method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3