检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:景海婷 张秦 陈曼 张兰 李政霄[2] 祝继华[1] 李钟毓[1] JING Haiting;ZHANG Qin;CHEN Man;ZHANG Lan;LI Zhengxiao;ZHU Jihua;LI Zhongyu(School of Software Engineering,Xi’an Jiaotong University,Xi’an 710049,China;The Second Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710004,China;East Branch,The First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710089,China)
机构地区:[1]西安交通大学软件学院,西安710049 [2]西安交通大学第二附属医院,西安710004 [3]西安交通大学第一附属医院东院,西安710089
出 处:《西安交通大学学报》2020年第9期142-148,156,共8页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金青年科学基金资助项目(61902310)。
摘 要:针对公开数据集训练所得模型无法直接应用于临床上不同设备的辅助诊断,而临床获取的数据又缺少足够人力进行标注的问题,提出了一种面向皮肤病临床影像识别的小样本域自适应方法。以ISIC皮肤病公开数据集作为标签已知的源域,以实际临床采集的数据作为待识别的目标域,通过医生对极少量临床数据进行标注,建立由卷积神经网络实现的特征提取器和分类器,构建小样本域自适应模型。引入最大相关熵准则来提高识别模型的精度和泛化能力,在每类只有少量带标签目标域样本的情况下,通过交替最大最小化条件熵,在提取区别性特征的同时减小不同域之间的分布差距,提高了分类器在新域上的准确率,实现了模型的跨域迁移。对所提方法在日光性角化病和脂溢性角化病分类问题上进行了实验验证,结果表明:相比于非域自适应方法,所提方法克服了不同采集设备造成的数据分布差异问题,取得了更高的识别准确率;相比于无监督域自适应方法,所提方法通过加入极少量标注的临床数据实现了域自适应,识别准确率为93.94%。Aiming at the problem that the model trained by public data set cannot be directly applied to the auxiliary diagnosis of different clinical devices and there is not sufficient manpower to label the clinical data,few-shot domain adaptation for the identification of clinical image in dermatology is proposed.The ISIC dermatological public data set is taken as the source domain with known label,and the actual clinical dataset is taken as the target domain to be predicted,small amount of clinical data are marked by the doctor to train few-shot domain adaptive model of feature extractor and classifier implemented by convolutional neural network.The maximum correntropy criterion is adopted to improve the accuracy and generalization ability of the recognition model.If there are only a small number of labeled target samples in each class,the distribution gap between different domains is reduced while extracting discriminative features by alternating maximum and minimum conditional entropy.The accuracy of the classifier in the new domain is improved,and the model is transferred across domains.The proposed method is experimentally verified in the classification of actinic keratosis and seborrheic keratosis.Compared with the non-domain adaptive method,the proposed method solves the difficulty of difference in data distribution caused by different collection devices and achieves higher recognition accuracy.Compared with the unsupervised domain adaptive method,the proposed method achieves domain adaptation by adding a small amount of labeled clinical data,and the recognition accuracy rate is 93.94%.
关 键 词:卷积神经网络 域自适应 小样本 皮肤病识别 最大相关熵准则
分 类 号:TP38[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66