基于清晰度评价的自适应阈值图像分割法  被引量:22

Adaptive Threshold Image Segmentation Based on Definition Evaluation

在线阅读下载全文

作  者:张田[1] 田勇[1] 王子 王昭东[1] ZHANG Tian;TIAN Yong;WANG Zi;WANG Zhao-dong(State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China)

机构地区:[1]东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2020年第9期1231-1238,共8页Journal of Northeastern University(Natural Science)

基  金:国家重点研发计划项目(2018YFB1701600);中央高校基本科研业务费专项资金资助项目(N170703010)。

摘  要:阈值法是一种被广泛使用的图像分割方法.本文从图像中信息的变化情况出发,提出一种基于图像清晰度评价的新颖的自适应阈值分割方法.该方法采用清晰度评价函数作为阈值化后图像内灰度相似性变化的度量方法,通过反复迭代并结合皮尔逊相关性直至找到最佳的分割阈值.通过多组图像数据尤其低对比度图像,包括钢板表面轻微缺陷等图像进行了测试对比.结果表明:相比传统阈值分割方法及其改进算法,在低对比度图像的处理上,本文方法能够自适应地准确找到合理阈值,具有优异的图像分割性能.Threshold is a widely used method for image segmentation.With the variance of the information in the image,this paper proposed a novel adaptive threshold segmentation method based on image definition evaluation.This method uses the definition evaluation function as a measure of the gray similarity change in the image after thresholding.Repeated iteration and Pearson correlation were combined until the optimal segmentation threshold was found.Test comparisons were performed using multiple sets of image data,especially low-contrast images,such as slight defects on the steel surface.The results showed that compared with the traditional threshold segmentation method and its improved algorithm,in the processing of low-contrast images,the proposed method can adaptively and accurately find a reasonable threshold value,and has an excellent performance of image segmentation.

关 键 词:计算机视觉 图像分割 自适应阈值 清晰度评价 低对比度图像 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象