检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔坤坤 樊绍胜[1,2] CUI Kunkun;FAN Shaosheng(School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China;Hunan Key Laboratory of Power Robots,Changsha 410114,China)
机构地区:[1]长沙理工大学电气与信息工程学院,长沙410114 [2]电力机器人湖南省重点实验室,长沙410114
出 处:《计算机工程》2020年第9期313-320,共8页Computer Engineering
基 金:国家自然科学基金(61473049);湖南省研究生科研创新项目(CX20190682)。
摘 要:针对变电站巡检机器人导航精度低与巡检点识别鲁棒性差的问题,提出一种采用动态双窗口的视觉导航与路径特征识别方法。根据导航图像匹配结果和相机位姿偏差动态设置导航窗口,将图像由传统的红绿蓝颜色空间转换为色调、饱和度和亮度颜色空间进行灰度图重构,利用分区自适应阈值分割算法提取导航路径并将其简化为直线模型,使用最小二乘法拟合计算出机器人与导航路径的距离偏差,同时将全视野范围作为特征识别窗口,根据路径长宽比改进基于区域建议的Faster R-CNN算法,最终完成对5种路径特征的识别。实验结果表明,在强光照和弱光照条件下,该方法所得巡检机器人的直线跟踪与曲线跟踪偏差分别小于5 mm和25 mm,对5类路径特征的平均识别准确率达到98.6%,与传统HOG+SVM目标检测方法相比,有效提高了导航精度和路径特征识别鲁棒性。To address the problems of low navigation accuracy and poor robustness of inspection point recognition of substation inspection robots,this paper proposes a visual navigation and path feature recognition method based on dynamic double windows.According to the navigation image matching results and camera pose deviation,the navigation window is dynamically set,and the color space of the image is transformed from the traditional Red,Green and Blue(RGB)color space into the Hue,Saturation and Value(HSV)color space for gray image reconstruction.The navigation path is extracted by using the partition adaptive threshold segmentation algorithm and simplified into a linear model.The distance deviation between the robot and the navigation path is calculated by the least square method.At the same time,the full field of view is used as the feature recognition window,and the Faster R-CNN algorithm based on region recommendation is improved according to the length-width ratio of the path.Finally,the features of five kinds of path are recognized.Experimental results show that under strong light and weak light conditions,the deviation of linear tracking and curve tracking of inspection robots obtained by the proposed method is less than 5 mm and 25 mm respectively,and the average recognition accuracy of features of five kinds of path reaches 98.6%.Compared with the traditional HOG+SVM target detection method,the proposed method effectively improves the navigation accuracy and robustness of path feature recognition.
关 键 词:巡检机器人 视觉导航 动态双窗口 灰度图重构 Faster R-CNN算法
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15