检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段献葆[1] 党妍 秦玲 DUAN Xianbao;DANG Yan;QIN Ling(School of Sciences,Xi'an University of Technology,Xi'an 710048,China)
出 处:《上海大学学报(自然科学版)》2020年第4期671-680,共10页Journal of Shanghai University:Natural Science Edition
基 金:国家自然科学基金资助项目(11601410,11971377);陕西省自然科学基金资助项目(2019JM-284,2017GY-090)。
摘 要:提出了一种基于水平集的自适应网格方法,并将其应用于求解由Stokes方程控制的不可压缩流体阻力最小问题。推导出了目标泛函的形状灵敏度分析。在优化过程中,采用在整个计算区域上定义的用于演化水平集函数的均匀粗网格和细网格。均匀的细网格是以水平集函数作为细化指标,由含界面的粗网格进一步划分得到,从而使得计算主要集中在界面附近。因此,与为实现相同数值精度把整个计算区域均匀细分的网格相比,该方法计算成本大大降低,特别是边界上的形状导数值可以隐式求得,这在经典的形状优化设计问题中是一项非常困难的任务。We present a level-set-based adaptive mesh method for solving the drag minimization problem of incompressible flow governed by the Stokes equations.A shape sensitivity analysis of the cost functional is presented.Two levels of meshes are employed during the optimization.A uniform coarse mesh for evolving the level set function is defined over the entire computational domain.Additionally,the level set function serves as a refinement indicator.The coarse mesh comprising the interfaces is then further divided into a uniform fine mesh.The computation is performed mainly near the interfaces.Therefore,the computational cost is significantly reduced compared with the uniform refined mesh over the whole domain that achieves the same resolution.Furthermore,the shape derivative on the boundary can be obtained implicitly,which is a very challenging task in classical optimal shape design problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.152.135