检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏峰 山磊[2] WEI Feng;SHAN Lei(School of Electronic Engineering and Optoelectronic Technology Engineering,Nanjing University of Science and Technology Zijin College,Nanjing 210023,China;School of Mechanical and Electrical Engineering,Lianyungang Technical College,Lianyungang 222006,China)
机构地区:[1]南京理工大学紫金学院电子工程与光电技术工程学院,江苏南京210023 [2]连云港职业技术学院机电工程学院,江苏连云港222006
出 处:《连云港职业技术学院学报》2020年第2期5-7,共3页Journal of Lianyungang Technical College
基 金:南京理工大学紫金学院校级教改项目(20190102009)。
摘 要:在深度学习领域中,手写数字识别是通过对大量的手写数字数据集的训练和测试、权重和偏置的优化,从而达到设计良好的网络模型。针对手写数字的形式多样性,从DNN和CNN网络结构入手,分析Le Net5的实际效果,采用Adam优化器和最佳的学习步长,实现了良好的识别效果。实验结果表明,论文所提方法能够显著提高手写数字的识别精度,对数字识别领域有重要的研究意义和商业价值。In the field of deep learning,handwritten digital recognition is designed by training and testing many handwritten digital data sets,optimizing weights and biases to achieve a well-designed network model. According to the variety of handwritten digits, starting with the DNN and CNN network structure,the actual effect of the LeNet5 is analyzed,and the Adam optimizer and the best learning step are used to achieve a good recognition effect.The experimental results show that the proposed method can significantly improve the recognition accuracy of handwritten digits and has important research significance and commercial value in the field of digital recognition.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3