气体传感器阵列混合气体检测算法研究  被引量:25

Research on mixed gas detection algorithm of gas sensor array

在线阅读下载全文

作  者:谭光韬 张文文 王磊[2] Tan Guangtao;Zhang Wenwen;Wang Lei(Sino-German College,Tongji University,Shanghai 201804,China;College of Electronic and Information,Tongji University,Shanghai 201804,China)

机构地区:[1]同济大学中德学院,上海201804 [2]同济大学电子信息与工程学院,上海201804

出  处:《电子测量与仪器学报》2020年第7期95-102,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家重点研发计划(2018YFE0105000);国家重点研发计划(2017YFE0100900);国家留学基金(201906260029)资助项目。

摘  要:针对传统模式识别算法对混合气体定性和定量检测准确率较低的问题,提出了一种基于机器学习的新型混合气体定性识别和浓度定量检测算法。算法首先构造传感器阵列数据特征图,然后利用卷积神经网络(CNN)提取特征,根据特征提取后的特征图,使用不同分支网络对不同气体进行定性识别,得到气体种类和相应气体所处浓度区间;根据前面的气体识别结果,使用核主成分分析(KPCA)与梯度提升树(GBDT)对混合气体的组成成分进行定量估计;最后采用加州大学机器学习数据库的动态混合气体气体传感器阵列数据集进行对比验证。实验结果表明,算法在乙烯和甲烷定性识别中准确率达到了98.7%,定量检测平均相对误差小于4.1%。通过与传统模式识别算法对比,所提出的基于机器学习的混合气体检测算法具有更高的精度和泛化能力。In view of the low accuracy of the traditional pattern recognition algorithm for qualitative and quantitative detection of mixed gases, a novel algorithm of hybrid gas qualitative identification and concentration quantitative detection based on machine learning is proposed. The algorithm constructs the feature map of sensor array data first, then uses the convolutional neural network(CNN) to extract features from feature maps. According to the feature map after feature extraction, different branches are used to identify different gases, then the species of gases and their concentration range were obtained;based on the results of gas identification, the kernel principal component analysis(KPCA) and gradient boosting decision tree(GBDT) were used to estimate the composition of the mixed gases quantitatively. Finally, this paper used the dataset of sensor array of mixed gases of Machine Learning Database of the University of California to verify the results. Experimental results show that the accuracy of the algorithm in the qualitative recognition of ethylene and methane reaches 98.7% and the average relative error of quantitative detection was less than 4.1%. Compared with the traditional pattern recognition algorithm, the machine learning based mixed gas detection algorithm that proposed has higher accuracy and stronger generalization ability.

关 键 词:传感器阵列 卷积神经网络 核主成分分析 梯度提升树 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置] TN911.72[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象