检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:齐永锋 陈静 火元莲[2] 李发勇 QI Yongfeng;CHEN Jing;HUO Yuanlian;LI Fayong(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)
机构地区:[1]西北师范大学计算机科学与工程学院,甘肃兰州730070 [2]西北师范大学物理与电子工程学院,甘肃兰州730070
出 处:《红外技术》2020年第9期855-862,共8页Infrared Technology
基 金:甘肃省高等学校科研项目(2016A-004);甘肃省科技计划项目(18JR3RA097)。
摘 要:为了提高高光谱图像的分类精度,提出了一种基于多尺度卷积神经网络的高光谱图像分类算法。首先,利用等距特征映射算法处理高光谱数据,以挖掘数据的非线性特性,保持数据点的内在几何性质;然后,构建以标记像元为中心的训练图像块,训练多尺度卷积神经网络;最后,利用softmax分类器预测测试像元的标签。提出的方法在Indian Pines、University of Pavia和Salinas scene高光谱遥感数据集上进行分类实验,并与CNN、R-PCA CNN、CNN-PPF、CD-CNN等算法进行性能比较。实验结果表明,在3个数据集上提出的方法的总体识别精度分别达到98.51%、98.64%和99.39%,与CNN算法相比分别提高了约8.35%、6.37%和7.81%。本文提出的方法无论是在分类精度还是Kappa系数上都优于另外4种方法,是一种较好的高光谱遥感数据分类方法。To improve the classification accuracy of hyperspectral remote sensing images,a classification algorithm based on a multiscale convolutional neural network(CNN)is proposed.First,an isometric feature mapping algorithm was used to process hyperspectral data,to mine the nonlinear characteristics of the data and maintain the intrinsic geometric properties of data points.Second,training image blocks centered on labeled pixels were constructed,after which the multiscale CNNs were trained.Finally,the Softmax classifier was used to predict the label of the test pixel.The proposed method performed classification experiments on the Indian Pines,University of Pavia,and Salinas scene hyperspectral remote sensing datasets,and its performance was compared with a CNN,randomized principal component analysis(R-PCA CNN),a deep CNN with pixel-pair features(CNN-PPF),a cross-domain CNN(CD-CNN),and other algorithms.The experimental results showed that the overall recognition accuracy of the proposed method for the three datasets was 98.51%,98.64%,and 99.39%,respectively,which was 8.35%,6.37%,and 7.81%higher than that of the CNN algorithm,respectively.The proposed method performed better than the other four methods studied,in terms of both classification accuracy and Kappa coefficient,providing a superior method for hyperspectral remote sensing data classification.
关 键 词:高光谱图像 等距特征映射 多尺度卷积神经网络 分类
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.197.130