检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘佳 LIU Jia(North Branch of Customer Service Center of State Grid,Tianjin 300309,China)
机构地区:[1]国家电网有限公司客户服务中心北方分中心,天津300309
出 处:《电气传动》2020年第9期83-87,共5页Electric Drive
摘 要:为提高永磁直线同步电动机(PMLSM)位置跟踪性能,采用递归函数链模糊神经网络控制(RFLFNN)方法。RFLFNN结合了函数链神经网络(FLNN)和递归模糊神经网络(RFNN)的优点,利用FLNN实现函数扩展,提高系统的非线性逼近能力并对参数进行辨识;RFNN可实时更新调整神经网络的参数值,估计并抑制不确定性因素的影响。实验结果表明,与RFNN相比,该方法极大地改善了PMLSM伺服系统的位置跟踪性能和鲁棒性能。In order to improve the position tracking performance of permanent magnet linear synchronous motor(PMLSM),the recursive function link fuzzy neural network(RFLFNN)control method was adopted.RFLFNN was combined functional link neural network(FLNN)with recurrent fuzzy neural network(RFNN),FLNN was used to expand functions and improve the non-linear approximation ability of the system and identify parameters.RFLFNN was used to update and adjust the parameters of the neural network in real time to estimate and suppress the influence of uncertainties.The experimental results show that,this method greatly improves the position tracking performance and robust performance of PMLSM servo system compared with RFNN.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44