检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈艳河[1] 王瑨 Shen Yanhe;Wang Jin(Yellow River Conservancy Technical Institute,Kaifeng 475004,China)
机构地区:[1]黄河水利职业技术学院,河南省开封市475004
出 处:《合成树脂及塑料》2020年第5期72-75,共4页China Synthetic Resin and Plastics
摘 要:设计了一种基于神经网络比例积分微分(PID)控制的伺服驱动液压注塑机压力恒定控制系统。通过径向基函数(RBF)神经网络实现PID参数的自适应在线调整,使PID控制效果达到最优,并进行了仿真分析。结果表明:与传统PID控制算法相比,RBF神经网络PID控制算法具有超调量小,响应速度快及自适应能力强等优点,能够满足伺服驱动液压注塑机控制系统的要求。A pressure constant control system used for servo-driven hydraulic injection machine based on neural network proportional-integral-differential(PID)was designed.Radical basis function(RBF)neural network was used to realize the adaptive online adjustment of the PID parameters,so that the PID control effect can be optimized.The simulation analysis was carried out at last.The results show that the RBF neural network PID control algorithm has the advantages of small overshoot,fast response speed and strong adaptiveness energy compared with the traditional PID control algorithm,meeting the requirements of control system in servo-driven hydraulic injection machine.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222