检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄帅坤 陈洪刚[1] 卿粼波[1] 郝传铭 Huang Shuaikun;Chen Honggang;Qing Linbo;Hao Chuanming(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出 处:《信息技术与网络安全》2020年第10期1-6,共6页Information Technology and Network Security
摘 要:在岩心面阵相机开发中,可以使用基于学习的超分辨率技术来提升岩心图像的分辨率。针对现有超分辨率技术在重建岩心图像时存在的细节模糊或色彩偏差等问题,提出了一种基于深度卷积神经网络的Raw格式岩心图像超分辨率重建算法。首先,模拟相机图像处理器的线性处理部分合成线性图像数据集;然后,通过一个双层卷积神经网络,分别训练高低分辨率图像之间的纹理、色彩映射关系;最后,用重建出的线性高分辨率图像模拟相机图像处理器的非线性处理部分,获得纹理清晰且色彩逼真的岩心重建图像。实验结果表明,本文提出的重建算法提升了岩心图像的重建效果。In the development of core array camera,the learning based super resolution technology can be used to im-prove the resolution of core image.In order to solve the problems of detail blur or color deviation in the reconstruction of core images by existing super-resolution technologies,this paper proposes a Raw core image super-resolution recon-struction algorithm based on deep convolutional neural network.Firstly,the linear processing part of the analog camera image processor synthesizes the linear image data set.Then,a two-layer convolutional neural network is used to train the texture and color mapping relationship between high and low resolution images.Finally,the reconstructed linear high-resolution image simulates the nonlinear processing part of the camera image processor to obtain the core reconstruction image with clear texture and realistic color.Experimental results show that the reconstruction algorithm proposed in this paper improves the reconstruction effect of core images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.74.181